Cocyclic Development of Designs

نویسندگان

  • K. J. HORADAM
  • W. DE LAUNEY
چکیده

We present the basic theory of cocyclic development of designs, in which group development over a finite group G is modified by the action of a cocycle defined on G x G. Negacyclic and w-cyclic development are both special cases of cocyclic development. Techniques of design construction using the group ring, arising from difference set methods, also apply to cocyclic designs. Important classes of Hadamard matrices and generalized weighing matrices are cocyclic. We derive a characterization of cocyclic development which allows us to generate all matrices which are cocyclic over G. Any cocyclic matrix is equivalent to one obtained by entrywise action of an asymmetric matrix and a symmetric matrix on a G-developed matrix. The symmetric matrix is a Kronecker product of back w-cyclic matrices, and the asymmetric matrix is determined by the second integral homology group of G. We believe this link between combinatorial design theory and low-dimensional group cohomology leads to (i) a new way to generate combinatorial designs; (ii) a better understanding of the structure of some known designs; and (iii) a better understanding of known construction techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group actions on Hadamard matrices

Faculty of Arts Mathematics Department Master of Literature by Padraig Ó Catháin Hadamard matrices are an important item of study in combinatorial design theory. In this thesis, we explore the theory of cocyclic development of Hadamard matrices in terms of regular group actions on the expanded design. To this end a general theory of both group development and cocyclic development is formulated....

متن کامل

The cocyclic Hadamard matrices of order less than 40

In this paper all cocyclic Hadamard matrices of order less than 40 are classified. That is, all such Hadamard matrices are explicitly constructed, up to Hadamard equivalence. This represents a significant extension and completion of work by de Launey and Ito. The theory of cocyclic development is discussed, and an algorithm for determining whether a given Hadamard matrix is cocyclic is describe...

متن کامل

An explicit construction of fast cocyclic jacket transform on the finite field with any size

An orthogonal cocyclic framework of the block-wise inverse Jacket transform (BIJT) is proposed over the finite field. Instead of the conventional block-wise inverse Jacket matrix (BIJM), we investigate the cocyclic block-wise inverse Jacket matrix (CBIJM), where the high-order CBIJM can be factorized into the low-order sparse CBIJMs with a successive block architecture. It has a recursive fashi...

متن کامل

Transgression and the calculation of cocyclic matrices

It is conjectured that binary cocyclic matrices are a uniform source of Hadamard matrices. In testing this conjecture, it is useful to have a general method of calculating cocyclic matrices. We present such a method in this paper. The method draws on standard cohomology theory of finite groups. In particular we employ the Universal Coefficient Theorem, which expresses the second cohomology grou...

متن کامل

Flows: Cocyclic and Almost Cocyclic

A flow on a compact Hausdorff space is an automorphism. Using the closed structure on the category of uniform spaces, a flow gives rise, by iteration, to an action of the integers on the topological group of automorphisms of the object. We study special classes of flows: periodic, cocyclic, and almost cocyclic, mainly in term of the possibility of extending this action continuously to various c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003